Information on Result #547068
There is no linear OA(3245, 293, F3, 159) (dual of [293, 48, 160]-code), because residual code would yield OA(386, 133, S3, 53), but
- the linear programming bound shows that M ≥ 146601 713206 672215 854529 961683 786203 805963 714360 771638 656247 204712 306825 / 1 191506 890413 541201 033837 596832 > 386 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3246, 294, F3, 160) (dual of [294, 48, 161]-code) | [i] | Truncation | |
2 | No linear OA(3247, 295, F3, 161) (dual of [295, 48, 162]-code) | [i] | ||
3 | No linear OOA(3246, 293, F3, 2, 160) (dual of [(293, 2), 340, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3247, 293, F3, 2, 161) (dual of [(293, 2), 339, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3245, 293, F3, 2, 159) (dual of [(293, 2), 341, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3245, 293, F3, 3, 159) (dual of [(293, 3), 634, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3245, 293, F3, 4, 159) (dual of [(293, 4), 927, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3245, 293, F3, 5, 159) (dual of [(293, 5), 1220, 160]-NRT-code) | [i] | ||
9 | No digital (86, 245, 293)-net over F3 | [i] | Extracting Embedded Orthogonal Array |