Information on Result #547144
There is no linear OA(4150, 259, F4, 108) (dual of [259, 109, 109]-code), because residual code would yield OA(442, 150, S4, 27), but
- the linear programming bound shows that M ≥ 6 907764 547941 000764 622618 877042 097977 075368 460288 000000 / 349879 061882 751493 871160 963067 > 442 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4151, 260, F4, 109) (dual of [260, 109, 110]-code) | [i] | Truncation | |
2 | No linear OA(4152, 261, F4, 110) (dual of [261, 109, 111]-code) | [i] | ||
3 | No linear OA(4153, 262, F4, 111) (dual of [262, 109, 112]-code) | [i] | ||
4 | No linear OOA(4151, 259, F4, 2, 109) (dual of [(259, 2), 367, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4152, 259, F4, 2, 110) (dual of [(259, 2), 366, 111]-NRT-code) | [i] | ||
6 | No linear OOA(4153, 259, F4, 2, 111) (dual of [(259, 2), 365, 112]-NRT-code) | [i] | ||
7 | No linear OOA(4150, 259, F4, 2, 108) (dual of [(259, 2), 368, 109]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4150, 259, F4, 3, 108) (dual of [(259, 3), 627, 109]-NRT-code) | [i] | ||
9 | No digital (42, 150, 259)-net over F4 | [i] | Extracting Embedded Orthogonal Array |