Information on Result #547222
There is no linear OA(4186, 265, F4, 136) (dual of [265, 79, 137]-code), because residual code would yield OA(450, 128, S4, 34), but
- the linear programming bound shows that M ≥ 259 179668 828085 226279 928489 912831 484693 129044 766852 890167 105874 843246 416090 051379 200000 / 195 946350 820096 305299 454040 471197 976323 170907 400036 668719 > 450 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4187, 266, F4, 137) (dual of [266, 79, 138]-code) | [i] | Truncation | |
2 | No linear OA(4188, 267, F4, 138) (dual of [267, 79, 139]-code) | [i] | ||
3 | No linear OA(4189, 268, F4, 139) (dual of [268, 79, 140]-code) | [i] | ||
4 | No linear OOA(4187, 265, F4, 2, 137) (dual of [(265, 2), 343, 138]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4188, 265, F4, 2, 138) (dual of [(265, 2), 342, 139]-NRT-code) | [i] | ||
6 | No linear OOA(4189, 265, F4, 2, 139) (dual of [(265, 2), 341, 140]-NRT-code) | [i] | ||
7 | No linear OOA(4186, 265, F4, 2, 136) (dual of [(265, 2), 344, 137]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4186, 265, F4, 3, 136) (dual of [(265, 3), 609, 137]-NRT-code) | [i] | ||
9 | No digital (50, 186, 265)-net over F4 | [i] | Extracting Embedded Orthogonal Array |