Information on Result #547223
There is no linear OA(4187, 279, F4, 136) (dual of [279, 92, 137]-code), because residual code would yield OA(451, 142, S4, 34), but
- the linear programming bound shows that M ≥ 4 610313 159906 926525 664341 018985 134001 002935 024516 670027 849429 695227 494400 / 872927 774153 444300 468519 384817 812962 039547 > 451 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4188, 280, F4, 137) (dual of [280, 92, 138]-code) | [i] | Truncation | |
2 | No linear OA(4189, 281, F4, 138) (dual of [281, 92, 139]-code) | [i] | ||
3 | No linear OA(4190, 282, F4, 139) (dual of [282, 92, 140]-code) | [i] | ||
4 | No linear OOA(4188, 279, F4, 2, 137) (dual of [(279, 2), 370, 138]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4189, 279, F4, 2, 138) (dual of [(279, 2), 369, 139]-NRT-code) | [i] | ||
6 | No linear OOA(4190, 279, F4, 2, 139) (dual of [(279, 2), 368, 140]-NRT-code) | [i] | ||
7 | No linear OOA(4187, 279, F4, 2, 136) (dual of [(279, 2), 371, 137]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4187, 279, F4, 3, 136) (dual of [(279, 3), 650, 137]-NRT-code) | [i] | ||
9 | No digital (51, 187, 279)-net over F4 | [i] | Extracting Embedded Orthogonal Array |