Information on Result #547241
There is no linear OA(4193, 295, F4, 140) (dual of [295, 102, 141]-code), because residual code would yield OA(453, 154, S4, 35), but
- the linear programming bound shows that M ≥ 41 703398 919330 325950 392096 528863 240717 550221 075615 744173 933932 379820 486861 783040 / 484867 147795 691253 510179 077586 434709 803618 391831 > 453 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4194, 296, F4, 141) (dual of [296, 102, 142]-code) | [i] | Truncation | |
2 | No linear OA(4195, 297, F4, 142) (dual of [297, 102, 143]-code) | [i] | ||
3 | No linear OA(4196, 298, F4, 143) (dual of [298, 102, 144]-code) | [i] | ||
4 | No linear OOA(4194, 295, F4, 2, 141) (dual of [(295, 2), 396, 142]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4195, 295, F4, 2, 142) (dual of [(295, 2), 395, 143]-NRT-code) | [i] | ||
6 | No linear OOA(4196, 295, F4, 2, 143) (dual of [(295, 2), 394, 144]-NRT-code) | [i] | ||
7 | No linear OOA(4193, 295, F4, 2, 140) (dual of [(295, 2), 397, 141]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4193, 295, F4, 3, 140) (dual of [(295, 3), 692, 141]-NRT-code) | [i] | ||
9 | No digital (53, 193, 295)-net over F4 | [i] | Extracting Embedded Orthogonal Array |