Information on Result #547261
There is no linear OA(4200, 324, F4, 144) (dual of [324, 124, 145]-code), because residual code would yield OA(456, 179, S4, 36), but
- the linear programming bound shows that M ≥ 31 511442 125419 258293 449040 901884 044621 696169 017943 480590 506370 111897 600000 / 5839 126320 766662 475522 447173 784673 305301 > 456 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4201, 325, F4, 145) (dual of [325, 124, 146]-code) | [i] | Truncation | |
2 | No linear OA(4202, 326, F4, 146) (dual of [326, 124, 147]-code) | [i] | ||
3 | No linear OA(4203, 327, F4, 147) (dual of [327, 124, 148]-code) | [i] | ||
4 | No linear OOA(4201, 324, F4, 2, 145) (dual of [(324, 2), 447, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4202, 324, F4, 2, 146) (dual of [(324, 2), 446, 147]-NRT-code) | [i] | ||
6 | No linear OOA(4203, 324, F4, 2, 147) (dual of [(324, 2), 445, 148]-NRT-code) | [i] | ||
7 | No linear OOA(4200, 324, F4, 2, 144) (dual of [(324, 2), 448, 145]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4200, 324, F4, 3, 144) (dual of [(324, 3), 772, 145]-NRT-code) | [i] | ||
9 | No digital (56, 200, 324)-net over F4 | [i] | Extracting Embedded Orthogonal Array |