Information on Result #547275
There is no linear OA(4200, 249, F4, 148) (dual of [249, 49, 149]-code), because residual code would yield OA(452, 100, S4, 37), but
- the linear programming bound shows that M ≥ 122286 562316 677400 710065 247950 699724 199256 311251 272039 790450 228019 543203 578727 206911 566962 340550 130811 972817 601855 688395 354953 747543 223204 680493 432832 / 5909 445624 660275 177735 061262 841863 583710 628534 785955 840883 780789 693140 214269 486067 169858 699936 055397 157033 616741 653933 > 452 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4201, 250, F4, 149) (dual of [250, 49, 150]-code) | [i] | Truncation | |
2 | No linear OA(4202, 251, F4, 150) (dual of [251, 49, 151]-code) | [i] | ||
3 | No linear OA(4203, 252, F4, 151) (dual of [252, 49, 152]-code) | [i] | ||
4 | No linear OOA(4201, 249, F4, 2, 149) (dual of [(249, 2), 297, 150]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4202, 249, F4, 2, 150) (dual of [(249, 2), 296, 151]-NRT-code) | [i] | ||
6 | No linear OOA(4203, 249, F4, 2, 151) (dual of [(249, 2), 295, 152]-NRT-code) | [i] | ||
7 | No linear OOA(4200, 249, F4, 2, 148) (dual of [(249, 2), 298, 149]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4200, 249, F4, 3, 148) (dual of [(249, 3), 547, 149]-NRT-code) | [i] | ||
9 | No digital (52, 200, 249)-net over F4 | [i] | Extracting Embedded Orthogonal Array |