Information on Result #547281
There is no linear OA(4206, 342, F4, 148) (dual of [342, 136, 149]-code), because residual code would yield OA(458, 193, S4, 37), but
- the linear programming bound shows that M ≥ 161285 735386 400830 134445 178003 287186 762218 409717 533224 067961 483465 588736 000000 / 1 868030 896794 654733 447451 649501 557791 288931 > 458 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4207, 343, F4, 149) (dual of [343, 136, 150]-code) | [i] | Truncation | |
2 | No linear OA(4208, 344, F4, 150) (dual of [344, 136, 151]-code) | [i] | ||
3 | No linear OA(4209, 345, F4, 151) (dual of [345, 136, 152]-code) | [i] | ||
4 | No linear OOA(4207, 342, F4, 2, 149) (dual of [(342, 2), 477, 150]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4208, 342, F4, 2, 150) (dual of [(342, 2), 476, 151]-NRT-code) | [i] | ||
6 | No linear OOA(4209, 342, F4, 2, 151) (dual of [(342, 2), 475, 152]-NRT-code) | [i] | ||
7 | No linear OOA(4206, 342, F4, 2, 148) (dual of [(342, 2), 478, 149]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4206, 342, F4, 3, 148) (dual of [(342, 3), 820, 149]-NRT-code) | [i] | ||
9 | No digital (58, 206, 342)-net over F4 | [i] | Extracting Embedded Orthogonal Array |