Information on Result #547297
There is no linear OA(4208, 293, F4, 152) (dual of [293, 85, 153]-code), because residual code would yield OA(456, 140, S4, 38), but
- the linear programming bound shows that M ≥ 33224 510089 193434 121103 982150 072093 135568 373830 671910 070349 424562 458616 197168 496640 000000 / 5 929310 526700 508468 903034 465148 531898 302680 222550 630653 > 456 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4209, 294, F4, 153) (dual of [294, 85, 154]-code) | [i] | Truncation | |
2 | No linear OA(4210, 295, F4, 154) (dual of [295, 85, 155]-code) | [i] | ||
3 | No linear OA(4211, 296, F4, 155) (dual of [296, 85, 156]-code) | [i] | ||
4 | No linear OOA(4209, 293, F4, 2, 153) (dual of [(293, 2), 377, 154]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4210, 293, F4, 2, 154) (dual of [(293, 2), 376, 155]-NRT-code) | [i] | ||
6 | No linear OOA(4211, 293, F4, 2, 155) (dual of [(293, 2), 375, 156]-NRT-code) | [i] | ||
7 | No linear OOA(4208, 293, F4, 2, 152) (dual of [(293, 2), 378, 153]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4208, 293, F4, 3, 152) (dual of [(293, 3), 671, 153]-NRT-code) | [i] | ||
9 | No digital (56, 208, 293)-net over F4 | [i] | Extracting Embedded Orthogonal Array |