Information on Result #547315
There is no linear OA(4210, 245, F4, 156) (dual of [245, 35, 157]-code), because residual code would yield OA(454, 88, S4, 39), but
- the linear programming bound shows that M ≥ 388 306151 532706 712327 958115 613049 308256 005391 927015 697876 516864 / 1 038662 238351 660386 161900 190625 > 454 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4211, 246, F4, 157) (dual of [246, 35, 158]-code) | [i] | Truncation | |
2 | No linear OA(4212, 247, F4, 158) (dual of [247, 35, 159]-code) | [i] | ||
3 | No linear OA(4213, 248, F4, 159) (dual of [248, 35, 160]-code) | [i] | ||
4 | No linear OOA(4211, 245, F4, 2, 157) (dual of [(245, 2), 279, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4212, 245, F4, 2, 158) (dual of [(245, 2), 278, 159]-NRT-code) | [i] | ||
6 | No linear OOA(4213, 245, F4, 2, 159) (dual of [(245, 2), 277, 160]-NRT-code) | [i] | ||
7 | No linear OOA(4210, 245, F4, 2, 156) (dual of [(245, 2), 280, 157]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4210, 245, F4, 3, 156) (dual of [(245, 3), 525, 157]-NRT-code) | [i] | ||
9 | No digital (54, 210, 245)-net over F4 | [i] | Extracting Embedded Orthogonal Array |