Information on Result #547366
There is no linear OA(4229, 387, F4, 164) (dual of [387, 158, 165]-code), because residual code would yield OA(465, 222, S4, 41), but
- the linear programming bound shows that M ≥ 32 342197 523814 651165 392954 045591 141352 749935 799714 032461 858391 219530 982071 151362 048000 / 23186 656803 327364 360991 616330 320246 466025 092007 > 465 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4230, 388, F4, 165) (dual of [388, 158, 166]-code) | [i] | Truncation | |
2 | No linear OA(4231, 389, F4, 166) (dual of [389, 158, 167]-code) | [i] | ||
3 | No linear OA(4232, 390, F4, 167) (dual of [390, 158, 168]-code) | [i] | ||
4 | No linear OOA(4230, 387, F4, 2, 165) (dual of [(387, 2), 544, 166]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4231, 387, F4, 2, 166) (dual of [(387, 2), 543, 167]-NRT-code) | [i] | ||
6 | No linear OOA(4232, 387, F4, 2, 167) (dual of [(387, 2), 542, 168]-NRT-code) | [i] | ||
7 | No linear OOA(4229, 387, F4, 2, 164) (dual of [(387, 2), 545, 165]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4229, 387, F4, 3, 164) (dual of [(387, 3), 932, 165]-NRT-code) | [i] | ||
9 | No digital (65, 229, 387)-net over F4 | [i] | Extracting Embedded Orthogonal Array |