Information on Result #547403
There is no linear OA(4231, 255, F4, 172) (dual of [255, 24, 173]-code), because residual code would yield OA(459, 82, S4, 43), but
- the linear programming bound shows that M ≥ 113 303848 813251 769790 373484 570498 790503 594690 871296 / 335 930280 888125 > 459 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4232, 256, F4, 173) (dual of [256, 24, 174]-code) | [i] | Truncation | |
2 | No linear OA(4233, 257, F4, 174) (dual of [257, 24, 175]-code) | [i] | ||
3 | No linear OA(4234, 258, F4, 175) (dual of [258, 24, 176]-code) | [i] | ||
4 | No linear OOA(4232, 255, F4, 2, 173) (dual of [(255, 2), 278, 174]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4233, 255, F4, 2, 174) (dual of [(255, 2), 277, 175]-NRT-code) | [i] | ||
6 | No linear OOA(4234, 255, F4, 2, 175) (dual of [(255, 2), 276, 176]-NRT-code) | [i] | ||
7 | No linear OOA(4231, 255, F4, 2, 172) (dual of [(255, 2), 279, 173]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4231, 255, F4, 3, 172) (dual of [(255, 3), 534, 173]-NRT-code) | [i] | ||
9 | No digital (59, 231, 255)-net over F4 | [i] | Extracting Embedded Orthogonal Array |