Information on Result #547451
There is no linear OA(4242, 269, F4, 180) (dual of [269, 27, 181]-code), because residual code would yield OA(462, 88, S4, 45), but
- the linear programming bound shows that M ≥ 1 115878 796922 411753 730265 232586 868317 882698 851925 622784 / 45512 145087 655961 > 462 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4243, 270, F4, 181) (dual of [270, 27, 182]-code) | [i] | Truncation | |
2 | No linear OA(4244, 271, F4, 182) (dual of [271, 27, 183]-code) | [i] | ||
3 | No linear OA(4245, 272, F4, 183) (dual of [272, 27, 184]-code) | [i] | ||
4 | No linear OOA(4243, 269, F4, 2, 181) (dual of [(269, 2), 295, 182]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4244, 269, F4, 2, 182) (dual of [(269, 2), 294, 183]-NRT-code) | [i] | ||
6 | No linear OOA(4245, 269, F4, 2, 183) (dual of [(269, 2), 293, 184]-NRT-code) | [i] | ||
7 | No linear OOA(4242, 269, F4, 2, 180) (dual of [(269, 2), 296, 181]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4242, 269, F4, 3, 180) (dual of [(269, 3), 565, 181]-NRT-code) | [i] | ||
9 | No digital (62, 242, 269)-net over F4 | [i] | Extracting Embedded Orthogonal Array |