Information on Result #547716
There is no linear OA(2238, 335, F2, 106) (dual of [335, 97, 107]-code), because construction Y1 would yield
- OA(2237, 299, S2, 106), but
- the linear programming bound shows that M ≥ 2 372623 864838 720824 144751 616230 912568 605364 469958 081012 522169 374458 839809 772727 298051 538944 / 10 001354 293176 388857 > 2237 [i]
- OA(297, 335, S2, 36), but
- discarding factors would yield OA(297, 324, S2, 36), but
- the Rao or (dual) Hamming bound shows that M ≥ 158757 007614 184387 760434 595956 > 297 [i]
- discarding factors would yield OA(297, 324, S2, 36), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2239, 336, F2, 107) (dual of [336, 97, 108]-code) | [i] | Truncation | |
2 | No linear OOA(2239, 335, F2, 2, 107) (dual of [(335, 2), 431, 108]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2238, 335, F2, 2, 106) (dual of [(335, 2), 432, 107]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2238, 335, F2, 3, 106) (dual of [(335, 3), 767, 107]-NRT-code) | [i] | ||
5 | No linear OOA(2238, 335, F2, 4, 106) (dual of [(335, 4), 1102, 107]-NRT-code) | [i] | ||
6 | No linear OOA(2238, 335, F2, 5, 106) (dual of [(335, 5), 1437, 107]-NRT-code) | [i] | ||
7 | No linear OOA(2238, 335, F2, 6, 106) (dual of [(335, 6), 1772, 107]-NRT-code) | [i] | ||
8 | No linear OOA(2238, 335, F2, 7, 106) (dual of [(335, 7), 2107, 107]-NRT-code) | [i] | ||
9 | No linear OOA(2238, 335, F2, 8, 106) (dual of [(335, 8), 2442, 107]-NRT-code) | [i] | ||
10 | No digital (132, 238, 335)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2239, 397, F2, 106) (dual of [397, 158, 107]-code) | [i] | Construction Y1 (Bound) |