Information on Result #547780

There is no linear OA(3133, 201, F3, 85) (dual of [201, 68, 86]-code), because construction Y1 would yield
  1. linear OA(3132, 163, F3, 85) (dual of [163, 31, 86]-code), but
  2. OA(368, 201, S3, 38), but
    • discarding factors would yield OA(368, 187, S3, 38), but
      • the linear programming bound shows that M ≥ 4 185011 256460 307952 313976 653889 690485 861995 490330 218229 391251 955691 449885 824042 401792 / 14773 934323 743575 783185 881134 593137 934301 575737 911449 > 368 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3133, 201, F3, 2, 85) (dual of [(201, 2), 269, 86]-NRT-code) [i]Depth Reduction
2No linear OOA(3133, 201, F3, 3, 85) (dual of [(201, 3), 470, 86]-NRT-code) [i]
3No linear OOA(3133, 201, F3, 4, 85) (dual of [(201, 4), 671, 86]-NRT-code) [i]
4No linear OOA(3133, 201, F3, 5, 85) (dual of [(201, 5), 872, 86]-NRT-code) [i]
5No digital (48, 133, 201)-net over F3 [i]Extracting Embedded Orthogonal Array