Information on Result #548040

There is no linear OA(1686, 175, F16, 80) (dual of [175, 89, 81]-code), because construction Y1 would yield
  1. linear OA(1685, 92, F16, 80) (dual of [92, 7, 81]-code), but
  2. OA(1689, 175, S16, 83), but
    • discarding factors would yield OA(1689, 165, S16, 83), but
      • the linear programming bound shows that M ≥ 15352 684767 685611 086882 809761 984160 188561 571509 004484 738285 092713 831920 008077 971129 525920 055364 921813 182353 415776 911815 913281 106245 860502 560348 270257 729557 233664 / 103836 312412 686023 017550 716368 186316 554556 371946 618739 > 1689 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(1687, 176, F16, 81) (dual of [176, 89, 82]-code) [i]Truncation
2No linear OOA(1687, 175, F16, 2, 81) (dual of [(175, 2), 263, 82]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(1688, 175, F16, 2, 82) (dual of [(175, 2), 262, 83]-NRT-code) [i]
4No linear OOA(1686, 175, F16, 2, 80) (dual of [(175, 2), 264, 81]-NRT-code) [i]Depth Reduction
5No digital (6, 86, 175)-net over F16 [i]Extracting Embedded Orthogonal Array