Information on Result #58041

There is no OA(272, 126, S2, 32), because the linear programming bound shows that M ≥ 163 005211 721460 055257 870637 096174 404209 999872 / 34370 163308 084940 061297 > 272

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(273, 127, S2, 33) [i]Truncation
2No OOA(273, 126, S2, 2, 33) [i]m-Reduction for OOAs
3No OOA(272, 126, S2, 2, 32) [i]Depth Reduction
4No OOA(272, 126, S2, 3, 32) [i]
5No OOA(272, 126, S2, 4, 32) [i]
6No OOA(272, 126, S2, 5, 32) [i]
7No OOA(272, 126, S2, 6, 32) [i]
8No OOA(272, 126, S2, 7, 32) [i]
9No OOA(272, 126, S2, 8, 32) [i]
10No (40, 72, 126)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2136, 191, F2, 64) (dual of [191, 55, 65]-code) [i]Residual Code