Information on Result #58106

There is no OA(286, 117, S2, 40), because the linear programming bound shows that M ≥ 130542 530684 708997 729272 044030 263296 / 1503 240375 > 286

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(287, 118, S2, 41) [i]Truncation
2No OOA(287, 117, S2, 2, 41) [i]m-Reduction for OOAs
3No OOA(286, 117, S2, 2, 40) [i]Depth Reduction
4No OOA(286, 117, S2, 3, 40) [i]
5No OOA(286, 117, S2, 4, 40) [i]
6No OOA(286, 117, S2, 5, 40) [i]
7No OOA(286, 117, S2, 6, 40) [i]
8No OOA(286, 117, S2, 7, 40) [i]
9No OOA(286, 117, S2, 8, 40) [i]
10No (46, 86, 117)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2166, 198, F2, 80) (dual of [198, 32, 81]-code) [i]Residual Code
12Linear OA(241, 88, F2, 12) (dual of [88, 47, 13]-code) [i]Construction Y1