Information on Result #58119

There is no OA(286, 103, S2, 42), because the linear programming bound shows that M ≥ 158456 325028 528675 187087 900672 / 1705 > 286

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(287, 104, S2, 43) [i]Truncation
2No OOA(287, 103, S2, 2, 43) [i]m-Reduction for OOAs
3No OOA(286, 103, S2, 2, 42) [i]Depth Reduction
4No OOA(286, 103, S2, 3, 42) [i]
5No OOA(286, 103, S2, 4, 42) [i]
6No OOA(286, 103, S2, 5, 42) [i]
7No OOA(286, 103, S2, 6, 42) [i]
8No OOA(286, 103, S2, 7, 42) [i]
9No OOA(286, 103, S2, 8, 42) [i]
10No (44, 86, 103)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2170, 188, F2, 84) (dual of [188, 18, 85]-code) [i]Residual Code