Information on Result #58135
There is no OA(289, 104, S2, 44), because the linear programming bound shows that M ≥ 8 160500 738969 226772 135026 884608 / 12903 > 289
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(290, 105, S2, 45) | [i] | Truncation | |
2 | No OOA(290, 104, S2, 2, 45) | [i] | m-Reduction for OOAs | |
3 | No OOA(289, 104, S2, 2, 44) | [i] | Depth Reduction | |
4 | No OOA(289, 104, S2, 3, 44) | [i] | ||
5 | No OOA(289, 104, S2, 4, 44) | [i] | ||
6 | No OOA(289, 104, S2, 5, 44) | [i] | ||
7 | No OOA(289, 104, S2, 6, 44) | [i] | ||
8 | No OOA(289, 104, S2, 7, 44) | [i] | ||
9 | No OOA(289, 104, S2, 8, 44) | [i] | ||
10 | No (45, 89, 104)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2177, 193, F2, 88) (dual of [193, 16, 89]-code) | [i] | Residual Code |