Information on Result #58141

There is no OA(295, 130, S2, 44), because the linear programming bound shows that M ≥ 184927 376142 602562 778376 736697 353811 001344 / 3 793040 420631 > 295

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(296, 131, S2, 45) [i]Truncation
2No OOA(296, 130, S2, 2, 45) [i]m-Reduction for OOAs
3No OOA(295, 130, S2, 2, 44) [i]Depth Reduction
4No OOA(295, 130, S2, 3, 44) [i]
5No OOA(295, 130, S2, 4, 44) [i]
6No OOA(295, 130, S2, 5, 44) [i]
7No OOA(295, 130, S2, 6, 44) [i]
8No OOA(295, 130, S2, 7, 44) [i]
9No OOA(295, 130, S2, 8, 44) [i]
10No (51, 95, 130)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2183, 219, F2, 88) (dual of [219, 36, 89]-code) [i]Residual Code