Information on Result #58151

There is no OA(293, 108, S2, 46), because the linear programming bound shows that M ≥ 8 279342 982740 623278 525342 810112 / 833 > 293

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(294, 109, S2, 47) [i]Truncation
2No OOA(294, 108, S2, 2, 47) [i]m-Reduction for OOAs
3No OOA(293, 108, S2, 2, 46) [i]Depth Reduction
4No OOA(293, 108, S2, 3, 46) [i]
5No OOA(293, 108, S2, 4, 46) [i]
6No OOA(293, 108, S2, 5, 46) [i]
7No OOA(293, 108, S2, 6, 46) [i]
8No OOA(293, 108, S2, 7, 46) [i]
9No OOA(293, 108, S2, 8, 46) [i]
10No (47, 93, 108)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2185, 201, F2, 92) (dual of [201, 16, 93]-code) [i]Residual Code