Information on Result #58184
There is no OA(2103, 121, S2, 50), because the linear programming bound shows that M ≥ 2 256052 985033 382604 596500 655046 131712 / 211575 > 2103
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2104, 122, S2, 51) | [i] | Truncation | |
2 | No OOA(2104, 121, S2, 2, 51) | [i] | m-Reduction for OOAs | |
3 | No OOA(2106, 121, S2, 2, 53) | [i] | ||
4 | No OOA(2103, 121, S2, 2, 50) | [i] | Depth Reduction | |
5 | No OOA(2103, 121, S2, 3, 50) | [i] | ||
6 | No OOA(2103, 121, S2, 4, 50) | [i] | ||
7 | No OOA(2103, 121, S2, 5, 50) | [i] | ||
8 | No OOA(2103, 121, S2, 6, 50) | [i] | ||
9 | No OOA(2103, 121, S2, 7, 50) | [i] | ||
10 | No OOA(2103, 121, S2, 8, 50) | [i] | ||
11 | No (53, 103, 121)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |