Information on Result #58184

There is no OA(2103, 121, S2, 50), because the linear programming bound shows that M ≥ 2 256052 985033 382604 596500 655046 131712 / 211575 > 2103

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2104, 122, S2, 51) [i]Truncation
2No OOA(2104, 121, S2, 2, 51) [i]m-Reduction for OOAs
3No OOA(2106, 121, S2, 2, 53) [i]
4No OOA(2103, 121, S2, 2, 50) [i]Depth Reduction
5No OOA(2103, 121, S2, 3, 50) [i]
6No OOA(2103, 121, S2, 4, 50) [i]
7No OOA(2103, 121, S2, 5, 50) [i]
8No OOA(2103, 121, S2, 6, 50) [i]
9No OOA(2103, 121, S2, 7, 50) [i]
10No OOA(2103, 121, S2, 8, 50) [i]
11No (53, 103, 121)-net in base 2 [i]Extracting Embedded Orthogonal Array