Information on Result #58212

There is no OA(2107, 118, S2, 54), because the linear programming bound shows that M ≥ 6490 371073 168534 535663 120411 525120 / 33 > 2107

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2108, 119, S2, 55) [i]Truncation
2No OOA(2108, 118, S2, 2, 55) [i]m-Reduction for OOAs
3No OOA(2109, 118, S2, 2, 56) [i]
4No OOA(2110, 118, S2, 2, 57) [i]
5No OOA(2107, 118, S2, 2, 54) [i]Depth Reduction
6No OOA(2107, 118, S2, 3, 54) [i]
7No OOA(2107, 118, S2, 4, 54) [i]
8No OOA(2107, 118, S2, 5, 54) [i]
9No OOA(2107, 118, S2, 6, 54) [i]
10No OOA(2107, 118, S2, 7, 54) [i]
11No OOA(2107, 118, S2, 8, 54) [i]
12No (53, 107, 118)-net in base 2 [i]Extracting Embedded Orthogonal Array