Information on Result #58259
There is no OA(2123, 140, S2, 60), because the linear programming bound shows that M ≥ 3 888746 889172 484760 459445 013730 247120 519168 / 329189 > 2123
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2124, 141, S2, 61) | [i] | Truncation | |
2 | No OOA(2124, 140, S2, 2, 61) | [i] | m-Reduction for OOAs | |
3 | No OOA(2126, 140, S2, 2, 63) | [i] | ||
4 | No OOA(2123, 140, S2, 2, 60) | [i] | Depth Reduction | |
5 | No OOA(2123, 140, S2, 3, 60) | [i] | ||
6 | No OOA(2123, 140, S2, 4, 60) | [i] | ||
7 | No OOA(2123, 140, S2, 5, 60) | [i] | ||
8 | No OOA(2123, 140, S2, 6, 60) | [i] | ||
9 | No OOA(2123, 140, S2, 7, 60) | [i] | ||
10 | No OOA(2123, 140, S2, 8, 60) | [i] | ||
11 | No (63, 123, 140)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
12 | No linear OA(2243, 261, F2, 120) (dual of [261, 18, 121]-code) | [i] | Residual Code |