Information on Result #58259

There is no OA(2123, 140, S2, 60), because the linear programming bound shows that M ≥ 3 888746 889172 484760 459445 013730 247120 519168 / 329189 > 2123

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2124, 141, S2, 61) [i]Truncation
2No OOA(2124, 140, S2, 2, 61) [i]m-Reduction for OOAs
3No OOA(2126, 140, S2, 2, 63) [i]
4No OOA(2123, 140, S2, 2, 60) [i]Depth Reduction
5No OOA(2123, 140, S2, 3, 60) [i]
6No OOA(2123, 140, S2, 4, 60) [i]
7No OOA(2123, 140, S2, 5, 60) [i]
8No OOA(2123, 140, S2, 6, 60) [i]
9No OOA(2123, 140, S2, 7, 60) [i]
10No OOA(2123, 140, S2, 8, 60) [i]
11No (63, 123, 140)-net in base 2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2243, 261, F2, 120) (dual of [261, 18, 121]-code) [i]Residual Code