Information on Result #58273
There is no OA(2127, 144, S2, 62), because the linear programming bound shows that M ≥ 1 097070 350953 105606 205919 734360 020713 734144 / 5719 > 2127
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2128, 145, S2, 63) | [i] | Truncation | |
2 | No OOA(2128, 144, S2, 2, 63) | [i] | m-Reduction for OOAs | |
3 | No OOA(2130, 144, S2, 2, 65) | [i] | ||
4 | No OOA(2127, 144, S2, 2, 62) | [i] | Depth Reduction | |
5 | No OOA(2127, 144, S2, 3, 62) | [i] | ||
6 | No OOA(2127, 144, S2, 4, 62) | [i] | ||
7 | No OOA(2127, 144, S2, 5, 62) | [i] | ||
8 | No OOA(2127, 144, S2, 6, 62) | [i] | ||
9 | No OOA(2127, 144, S2, 7, 62) | [i] | ||
10 | No OOA(2127, 144, S2, 8, 62) | [i] | ||
11 | No (65, 127, 144)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
12 | No linear OA(2251, 269, F2, 124) (dual of [269, 18, 125]-code) | [i] | Residual Code |