Information on Result #58273

There is no OA(2127, 144, S2, 62), because the linear programming bound shows that M ≥ 1 097070 350953 105606 205919 734360 020713 734144 / 5719 > 2127

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2128, 145, S2, 63) [i]Truncation
2No OOA(2128, 144, S2, 2, 63) [i]m-Reduction for OOAs
3No OOA(2130, 144, S2, 2, 65) [i]
4No OOA(2127, 144, S2, 2, 62) [i]Depth Reduction
5No OOA(2127, 144, S2, 3, 62) [i]
6No OOA(2127, 144, S2, 4, 62) [i]
7No OOA(2127, 144, S2, 5, 62) [i]
8No OOA(2127, 144, S2, 6, 62) [i]
9No OOA(2127, 144, S2, 7, 62) [i]
10No OOA(2127, 144, S2, 8, 62) [i]
11No (65, 127, 144)-net in base 2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2251, 269, F2, 124) (dual of [269, 18, 125]-code) [i]Residual Code