Information on Result #58274

There is no OA(2128, 146, S2, 62), because the linear programming bound shows that M ≥ 10 546031 115613 724859 656905 833525 360409 444352 / 30229 > 2128

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2129, 147, S2, 63) [i]Truncation
2No OOA(2129, 146, S2, 2, 63) [i]m-Reduction for OOAs
3No OOA(2131, 146, S2, 2, 65) [i]
4No OOA(2128, 146, S2, 2, 62) [i]Depth Reduction
5No OOA(2128, 146, S2, 3, 62) [i]
6No OOA(2128, 146, S2, 4, 62) [i]
7No OOA(2128, 146, S2, 5, 62) [i]
8No OOA(2128, 146, S2, 6, 62) [i]
9No OOA(2128, 146, S2, 7, 62) [i]
10No OOA(2128, 146, S2, 8, 62) [i]
11No (66, 128, 146)-net in base 2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2252, 271, F2, 124) (dual of [271, 19, 125]-code) [i]Residual Code
13No linear OA(2129, 156, F2, 62) (dual of [156, 27, 63]-code) [i]Construction Y1 (Bound)