Information on Result #58285

There is no OA(2131, 148, S2, 64), because the linear programming bound shows that M ≥ 37846 106847 625102 676119 046386 674320 128891 420672 / 12 104235 > 2131

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2132, 149, S2, 65) [i]Truncation
2No OOA(2132, 148, S2, 2, 65) [i]m-Reduction for OOAs
3No OOA(2133, 148, S2, 2, 66) [i]
4No OOA(2134, 148, S2, 2, 67) [i]
5No OOA(2131, 148, S2, 2, 64) [i]Depth Reduction
6No OOA(2131, 148, S2, 3, 64) [i]
7No OOA(2131, 148, S2, 4, 64) [i]
8No OOA(2131, 148, S2, 5, 64) [i]
9No OOA(2131, 148, S2, 6, 64) [i]
10No OOA(2131, 148, S2, 7, 64) [i]
11No OOA(2131, 148, S2, 8, 64) [i]
12No (67, 131, 148)-net in base 2 [i]Extracting Embedded Orthogonal Array
13No linear OA(2259, 277, F2, 128) (dual of [277, 18, 129]-code) [i]Residual Code