Information on Result #58285
There is no OA(2131, 148, S2, 64), because the linear programming bound shows that M ≥ 37846 106847 625102 676119 046386 674320 128891 420672 / 12 104235 > 2131
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2132, 149, S2, 65) | [i] | Truncation | |
2 | No OOA(2132, 148, S2, 2, 65) | [i] | m-Reduction for OOAs | |
3 | No OOA(2133, 148, S2, 2, 66) | [i] | ||
4 | No OOA(2134, 148, S2, 2, 67) | [i] | ||
5 | No OOA(2131, 148, S2, 2, 64) | [i] | Depth Reduction | |
6 | No OOA(2131, 148, S2, 3, 64) | [i] | ||
7 | No OOA(2131, 148, S2, 4, 64) | [i] | ||
8 | No OOA(2131, 148, S2, 5, 64) | [i] | ||
9 | No OOA(2131, 148, S2, 6, 64) | [i] | ||
10 | No OOA(2131, 148, S2, 7, 64) | [i] | ||
11 | No OOA(2131, 148, S2, 8, 64) | [i] | ||
12 | No (67, 131, 148)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
13 | No linear OA(2259, 277, F2, 128) (dual of [277, 18, 129]-code) | [i] | Residual Code |