Information on Result #58286

There is no OA(2132, 150, S2, 64), because the linear programming bound shows that M ≥ 7654 730789 395636 393332 135297 086550 086927 777792 / 1 285141 > 2132

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2133, 151, S2, 65) [i]Truncation
2No OOA(2133, 150, S2, 2, 65) [i]m-Reduction for OOAs
3No OOA(2135, 150, S2, 2, 67) [i]
4No OOA(2132, 150, S2, 2, 64) [i]Depth Reduction
5No OOA(2132, 150, S2, 3, 64) [i]
6No OOA(2132, 150, S2, 4, 64) [i]
7No OOA(2132, 150, S2, 5, 64) [i]
8No OOA(2132, 150, S2, 6, 64) [i]
9No OOA(2132, 150, S2, 7, 64) [i]
10No OOA(2132, 150, S2, 8, 64) [i]
11No (68, 132, 150)-net in base 2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2260, 279, F2, 128) (dual of [279, 19, 129]-code) [i]Residual Code
13No linear OA(2133, 160, F2, 64) (dual of [160, 27, 65]-code) [i]Construction Y1 (Bound)