Information on Result #58435

There is no OA(2232, 290, S2, 104), because the linear programming bound shows that M ≥ 31248 188163 173073 124141 552213 221428 911836 972514 149010 859356 835121 130605 760735 093805 023232 / 4 506159 960385 549875 > 2232

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2233, 291, S2, 105) [i]Truncation
2No OOA(2233, 290, S2, 2, 105) [i]m-Reduction for OOAs
3No OOA(2232, 290, S2, 2, 104) [i]Depth Reduction
4No OOA(2232, 290, S2, 3, 104) [i]
5No OOA(2232, 290, S2, 4, 104) [i]
6No OOA(2232, 290, S2, 5, 104) [i]
7No OOA(2232, 290, S2, 6, 104) [i]
8No OOA(2232, 290, S2, 7, 104) [i]
9No OOA(2232, 290, S2, 8, 104) [i]
10No (128, 232, 290)-net in base 2 [i]Extracting Embedded Orthogonal Array