Information on Result #59174
There is no OA(3104, 150, S3, 64), because the linear programming bound shows that M ≥ 24090 181438 283577 330749 823810 837311 447745 255812 944625 866896 355094 419670 238209 625117 / 575 377332 629089 480249 998798 828125 > 3104
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(3104, 150, S3, 2, 64) | [i] | Depth Reduction | |
2 | No OOA(3104, 150, S3, 3, 64) | [i] | ||
3 | No OOA(3104, 150, S3, 4, 64) | [i] | ||
4 | No OOA(3104, 150, S3, 5, 64) | [i] | ||
5 | No (40, 104, 150)-net in base 3 | [i] | Extracting Embedded Orthogonal Array | |
6 | No linear OA(3105, 225, F3, 64) (dual of [225, 120, 65]-code) | [i] | Construction Y1 (Bound) | |
7 | No linear OA(3105, 224, F3, 64) (dual of [224, 119, 65]-code) | [i] |