Information on Result #604262
Linear OA(2137, 138, F2, 137) (dual of [138, 1, 138]-code or 138-arc in PG(136,2)), using dual of repetition code with length 138
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2137, 138, F2, 136) (dual of [138, 1, 137]-code) | [i] | Strength Reduction | |
2 | Linear OA(2137, 138, F2, 135) (dual of [138, 1, 136]-code) | [i] | ||
3 | Linear OA(2137, 138, F2, 134) (dual of [138, 1, 135]-code) | [i] | ||
4 | Linear OA(2137, 138, F2, 133) (dual of [138, 1, 134]-code) | [i] | ||
5 | Linear OA(2137, 138, F2, 132) (dual of [138, 1, 133]-code) | [i] | ||
6 | Linear OA(2137, 138, F2, 131) (dual of [138, 1, 132]-code) | [i] | ||
7 | Linear OA(2137, 138, F2, 130) (dual of [138, 1, 131]-code) | [i] | ||
8 | Linear OA(2137, 138, F2, 129) (dual of [138, 1, 130]-code) | [i] | ||
9 | Linear OA(2137, 138, F2, 128) (dual of [138, 1, 129]-code) | [i] | ||
10 | Linear OA(2137, 138, F2, 127) (dual of [138, 1, 128]-code) | [i] | ||
11 | Linear OA(2137, 138, F2, 126) (dual of [138, 1, 127]-code) | [i] | ||
12 | Linear OA(2137, 138, F2, 125) (dual of [138, 1, 126]-code) | [i] | ||
13 | Linear OA(2137, 138, F2, 124) (dual of [138, 1, 125]-code) | [i] | ||
14 | Linear OA(2137, 138, F2, 123) (dual of [138, 1, 124]-code) | [i] | ||
15 | Linear OA(2137, 138, F2, 122) (dual of [138, 1, 123]-code) | [i] | ||
16 | Linear OA(2137, 138, F2, 121) (dual of [138, 1, 122]-code) | [i] | ||
17 | Linear OA(2137, 138, F2, 120) (dual of [138, 1, 121]-code) | [i] | ||
18 | Linear OA(2137, 138, F2, 119) (dual of [138, 1, 120]-code) | [i] | ||
19 | Linear OA(2137, 138, F2, 118) (dual of [138, 1, 119]-code) | [i] | ||
20 | Linear OA(2137, 138, F2, 117) (dual of [138, 1, 118]-code) | [i] | ||
21 | Linear OA(2137, 138, F2, 116) (dual of [138, 1, 117]-code) | [i] | ||
22 | Linear OA(2137, 138, F2, 115) (dual of [138, 1, 116]-code) | [i] | ||
23 | Linear OA(2137, 138, F2, 114) (dual of [138, 1, 115]-code) | [i] | ||
24 | Linear OA(2137, 138, F2, 113) (dual of [138, 1, 114]-code) | [i] | ||
25 | Linear OA(2137, 138, F2, 112) (dual of [138, 1, 113]-code) | [i] | ||
26 | Linear OA(2137, 138, F2, 111) (dual of [138, 1, 112]-code) | [i] | ||
27 | Linear OA(2137, 138, F2, 110) (dual of [138, 1, 111]-code) | [i] | ||
28 | Linear OA(2137, 138, F2, 109) (dual of [138, 1, 110]-code) | [i] | ||
29 | Linear OA(2137, 138, F2, 108) (dual of [138, 1, 109]-code) | [i] | ||
30 | Linear OA(2137, 138, F2, 107) (dual of [138, 1, 108]-code) | [i] | ||
31 | Linear OA(2137, 138, F2, 106) (dual of [138, 1, 107]-code) | [i] | ||
32 | Linear OA(2137, 138, F2, 105) (dual of [138, 1, 106]-code) | [i] | ||
33 | Linear OA(2137, 138, F2, 104) (dual of [138, 1, 105]-code) | [i] | ||
34 | Linear OA(2137, 138, F2, 103) (dual of [138, 1, 104]-code) | [i] | ||
35 | Linear OA(2137, 138, F2, 102) (dual of [138, 1, 103]-code) | [i] | ||
36 | Linear OA(2137, 138, F2, 101) (dual of [138, 1, 102]-code) | [i] | ||
37 | Linear OA(2137, 138, F2, 100) (dual of [138, 1, 101]-code) | [i] | ||
38 | Linear OA(2137, 138, F2, 99) (dual of [138, 1, 100]-code) | [i] | ||
39 | Linear OA(2137, 138, F2, 98) (dual of [138, 1, 99]-code) | [i] | ||
40 | Linear OA(2137, 138, F2, 97) (dual of [138, 1, 98]-code) | [i] | ||
41 | Linear OA(2137, 138, F2, 96) (dual of [138, 1, 97]-code) | [i] | ||
42 | Linear OA(2137, 138, F2, 95) (dual of [138, 1, 96]-code) | [i] | ||
43 | Linear OA(2137, 138, F2, 94) (dual of [138, 1, 95]-code) | [i] | ||
44 | Linear OA(2137, 138, F2, 93) (dual of [138, 1, 94]-code) | [i] | ||
45 | Linear OA(2137, 138, F2, 92) (dual of [138, 1, 93]-code) | [i] |