Information on Result #604425
Linear OA(339, 40, F3, 39) (dual of [40, 1, 40]-code or 40-arc in PG(38,3)), using dual of repetition code with length 40
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(339, 40, F3, 38) (dual of [40, 1, 39]-code) | [i] | Strength Reduction | |
2 | Linear OA(339, 40, F3, 37) (dual of [40, 1, 38]-code) | [i] | ||
3 | Linear OA(339, 40, F3, 36) (dual of [40, 1, 37]-code) | [i] | ||
4 | Linear OA(339, 40, F3, 35) (dual of [40, 1, 36]-code) | [i] | ||
5 | Linear OA(339, 40, F3, 34) (dual of [40, 1, 35]-code) | [i] | ||
6 | Linear OA(339, 40, F3, 33) (dual of [40, 1, 34]-code) | [i] | ||
7 | Linear OA(339, 40, F3, 32) (dual of [40, 1, 33]-code) | [i] | ||
8 | Linear OA(339, 40, F3, 31) (dual of [40, 1, 32]-code) | [i] | ||
9 | Linear OA(339, 40, F3, 30) (dual of [40, 1, 31]-code) | [i] | ||
10 | Linear OA(3101, 159, F3, 39) (dual of [159, 58, 40]-code) | [i] | Varšamov–Edel Lengthening | |
11 | Linear OA(3102, 163, F3, 39) (dual of [163, 61, 40]-code) | [i] | ||
12 | Linear OA(3103, 167, F3, 39) (dual of [167, 64, 40]-code) | [i] | ||
13 | Linear OA(3107, 185, F3, 39) (dual of [185, 78, 40]-code) | [i] | ||
14 | Linear OA(3108, 190, F3, 39) (dual of [190, 82, 40]-code) | [i] | ||
15 | Linear OA(3109, 195, F3, 39) (dual of [195, 86, 40]-code) | [i] | ||
16 | Linear OA(3110, 200, F3, 39) (dual of [200, 90, 40]-code) | [i] | ||
17 | Linear OA(3124, 290, F3, 39) (dual of [290, 166, 40]-code) | [i] | ||
18 | Linear OA(3125, 298, F3, 39) (dual of [298, 173, 40]-code) | [i] | ||
19 | Linear OA(3139, 437, F3, 39) (dual of [437, 298, 40]-code) | [i] | ||
20 | Linear OA(3141, 462, F3, 39) (dual of [462, 321, 40]-code) | [i] | ||
21 | Linear OA(3142, 475, F3, 39) (dual of [475, 333, 40]-code) | [i] | ||
22 | Linear OA(3144, 502, F3, 39) (dual of [502, 358, 40]-code) | [i] | ||
23 | Linear OA(3160, 786, F3, 39) (dual of [786, 626, 40]-code) | [i] | ||
24 | Linear OA(3164, 880, F3, 39) (dual of [880, 716, 40]-code) | [i] | ||
25 | Linear OA(3167, 958, F3, 39) (dual of [958, 791, 40]-code) | [i] | ||
26 | Linear OA(3170, 1043, F3, 39) (dual of [1043, 873, 40]-code) | [i] | ||
27 | Linear OA(3171, 1073, F3, 39) (dual of [1073, 902, 40]-code) | [i] | ||
28 | Linear OA(3172, 1104, F3, 39) (dual of [1104, 932, 40]-code) | [i] | ||
29 | Linear OA(3173, 1136, F3, 39) (dual of [1136, 963, 40]-code) | [i] | ||
30 | Linear OA(3176, 1237, F3, 39) (dual of [1237, 1061, 40]-code) | [i] | ||
31 | Linear OA(3177, 1273, F3, 39) (dual of [1273, 1096, 40]-code) | [i] | ||
32 | Linear OA(3197, 2254, F3, 39) (dual of [2254, 2057, 40]-code) | [i] | ||
33 | Linear OA(3201, 2528, F3, 39) (dual of [2528, 2327, 40]-code) | [i] | ||
34 | Linear OA(3240, 284, F3, 79) (dual of [284, 44, 80]-code) | [i] | Construction X with Cyclic Codes | |
35 | Linear OA(3250, 284, F3, 81) (dual of [284, 34, 82]-code) | [i] | ||
36 | Linear OA(3250, 283, F3, 120) (dual of [283, 33, 121]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes |