Information on Result #611194
Linear OA(2133, 4096, F2, 23) (dual of [4096, 3963, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 4095 = 212−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2132, 4095, F2, 22) (dual of [4095, 3963, 23]-code) | [i] | Truncation | |
2 | Linear OA(2146, 4109, F2, 25) (dual of [4109, 3963, 26]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(2134, 4109, F2, 23) (dual of [4109, 3975, 24]-code) | [i] | ✔ | |
4 | Linear OA(2163, 4126, F2, 27) (dual of [4126, 3963, 28]-code) | [i] | ✔ | |
5 | Linear OA(2139, 4126, F2, 23) (dual of [4126, 3987, 24]-code) | [i] | ✔ | |
6 | Linear OA(2182, 4145, F2, 29) (dual of [4145, 3963, 30]-code) | [i] | ✔ | |
7 | Linear OA(2181, 4141, F2, 29) (dual of [4141, 3960, 30]-code) | [i] | ✔ | |
8 | Linear OA(2181, 4144, F2, 29) (dual of [4144, 3963, 30]-code) | [i] | ✔ | |
9 | Linear OOA(2133, 2048, F2, 2, 23) (dual of [(2048, 2), 3963, 24]-NRT-code) | [i] | OOA Folding | |
10 | Linear OOA(2133, 1365, F2, 3, 23) (dual of [(1365, 3), 3962, 24]-NRT-code) | [i] | ||
11 | Linear OOA(2133, 1024, F2, 4, 23) (dual of [(1024, 4), 3963, 24]-NRT-code) | [i] | ||
12 | Linear OOA(2133, 819, F2, 5, 23) (dual of [(819, 5), 3962, 24]-NRT-code) | [i] | ||
13 | Linear OOA(2133, 682, F2, 6, 23) (dual of [(682, 6), 3959, 24]-NRT-code) | [i] | ||
14 | Linear OOA(2133, 585, F2, 7, 23) (dual of [(585, 7), 3962, 24]-NRT-code) | [i] | ||
15 | Linear OOA(2133, 512, F2, 8, 23) (dual of [(512, 8), 3963, 24]-NRT-code) | [i] | ||
16 | Linear OOA(2133, 372, F2, 23, 23) (dual of [(372, 23), 8423, 24]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |