Information on Result #611271

Linear OA(285, 127, F2, 31) (dual of [127, 42, 32]-code), using the expurgated primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,28], and minimum distance d ≥ 32 (sporadic result) and all weights a multiple of 2 because the code is contained in its dual

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(285, 128, F2, 31) (dual of [128, 43, 32]-code) [i]Construction X with Cyclic Codes
2Linear OA(2100, 142, F2, 33) (dual of [142, 42, 34]-code) [i]
3Linear OA(2120, 159, F2, 43) (dual of [159, 39, 44]-code) [i]
4Linear OA(2123, 165, F2, 43) (dual of [165, 42, 44]-code) [i]
5Linear OA(2119, 159, F2, 41) (dual of [159, 40, 42]-code) [i]
6Linear OA(2120, 162, F2, 41) (dual of [162, 42, 42]-code) [i]
7Linear OA(2111, 151, F2, 39) (dual of [151, 40, 40]-code) [i]
8Linear OA(2114, 155, F2, 39) (dual of [155, 41, 40]-code) [i]
9Linear OA(2115, 157, F2, 39) (dual of [157, 42, 40]-code) [i]
10Linear OA(2108, 145, F2, 37) (dual of [145, 37, 38]-code) [i]
11Linear OA(2110, 152, F2, 37) (dual of [152, 42, 38]-code) [i]
12Linear OA(2104, 143, F2, 35) (dual of [143, 39, 36]-code) [i]
13Linear OA(2105, 147, F2, 35) (dual of [147, 42, 36]-code) [i]
14Linear OA(289, 135, F2, 31) (dual of [135, 46, 32]-code) [i]
15Linear OA(290, 139, F2, 31) (dual of [139, 49, 32]-code) [i]
16Linear OA(297, 151, F2, 31) (dual of [151, 54, 32]-code) [i]
17Linear OA(2109, 151, F2, 37) (dual of [151, 42, 38]-code) [i]
18Linear OA(296, 147, F2, 31) (dual of [147, 51, 32]-code) [i]Construction XX with a Chain of Cyclic Codes
19Linear OA(294, 144, F2, 31) (dual of [144, 50, 32]-code) [i]
20Linear OOA(285, 42, F2, 3, 31) (dual of [(42, 3), 41, 32]-NRT-code) [i]OOA Folding