Information on Result #611739
Linear OA(373, 6561, F3, 14) (dual of [6561, 6488, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 6560 = 38−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(380, 6569, F3, 14) (dual of [6569, 6489, 15]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(382, 6570, F3, 16) (dual of [6570, 6488, 17]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(373, 6569, F3, 14) (dual of [6569, 6496, 15]-code) | [i] | ✔ | |
4 | Linear OA(392, 6574, F3, 17) (dual of [6574, 6482, 18]-code) | [i] | ✔ | |
5 | Linear OA(393, 6581, F3, 17) (dual of [6581, 6488, 18]-code) | [i] | ✔ | |
6 | Linear OA(376, 6574, F3, 14) (dual of [6574, 6498, 15]-code) | [i] | ✔ | |
7 | Linear OA(377, 6581, F3, 14) (dual of [6581, 6504, 15]-code) | [i] | ✔ | |
8 | Linear OA(3104, 6588, F3, 19) (dual of [6588, 6484, 20]-code) | [i] | ✔ | |
9 | Linear OA(3105, 6593, F3, 19) (dual of [6593, 6488, 20]-code) | [i] | ✔ | |
10 | Linear OA(3103, 6591, F3, 18) (dual of [6591, 6488, 19]-code) | [i] | ✔ | |
11 | Linear OA(379, 6591, F3, 14) (dual of [6591, 6512, 15]-code) | [i] | ✔ | |
12 | Linear OA(3115, 6597, F3, 20) (dual of [6597, 6482, 21]-code) | [i] | ✔ | |
13 | Linear OA(3116, 6602, F3, 20) (dual of [6602, 6486, 21]-code) | [i] | ✔ | |
14 | Linear OA(3115, 6600, F3, 20) (dual of [6600, 6485, 21]-code) | [i] | ✔ | |
15 | Linear OA(3116, 6604, F3, 20) (dual of [6604, 6488, 21]-code) | [i] | ✔ | |
16 | Linear OA(3114, 6596, F3, 20) (dual of [6596, 6482, 21]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
17 | Linear OA(3113, 6594, F3, 20) (dual of [6594, 6481, 21]-code) | [i] | ✔ | |
18 | Linear OA(3102, 6585, F3, 18) (dual of [6585, 6483, 19]-code) | [i] | ✔ | |
19 | Linear OA(3101, 6583, F3, 18) (dual of [6583, 6482, 19]-code) | [i] | ✔ | |
20 | Linear OA(3100, 6581, F3, 18) (dual of [6581, 6481, 19]-code) | [i] | ✔ | |
21 | Linear OA(3106, 6595, F3, 19) (dual of [6595, 6489, 20]-code) | [i] | ✔ | |
22 | Linear OA(3104, 6593, F3, 18) (dual of [6593, 6489, 19]-code) | [i] | ✔ | |
23 | Linear OA(391, 6572, F3, 17) (dual of [6572, 6481, 18]-code) | [i] | ✔ | |
24 | Linear OA(394, 6583, F3, 17) (dual of [6583, 6489, 18]-code) | [i] | ✔ | |
25 | Linear OA(383, 6572, F3, 16) (dual of [6572, 6489, 17]-code) | [i] | ✔ | |
26 | Linear OA(375, 6572, F3, 14) (dual of [6572, 6497, 15]-code) | [i] | ✔ | |
27 | Linear OA(378, 6583, F3, 14) (dual of [6583, 6505, 15]-code) | [i] | ✔ |