Information on Result #612159
Linear OA(3199, 19683, F3, 34) (dual of [19683, 19484, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 19682 = 39−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3198, 19682, F3, 33) (dual of [19682, 19484, 34]-code) | [i] | Truncation | |
2 | Linear OA(3216, 19701, F3, 34) (dual of [19701, 19485, 35]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OA(3208, 19692, F3, 35) (dual of [19692, 19484, 36]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
4 | Linear OA(3200, 19693, F3, 34) (dual of [19693, 19493, 35]-code) | [i] | ✔ | |
5 | Linear OA(3218, 19702, F3, 36) (dual of [19702, 19484, 37]-code) | [i] | ✔ | |
6 | Linear OA(3220, 19696, F3, 37) (dual of [19696, 19476, 38]-code) | [i] | ✔ | |
7 | Linear OA(3221, 19705, F3, 37) (dual of [19705, 19484, 38]-code) | [i] | ✔ | |
8 | Linear OA(3202, 19696, F3, 34) (dual of [19696, 19494, 35]-code) | [i] | ✔ | |
9 | Linear OA(3203, 19705, F3, 34) (dual of [19705, 19502, 35]-code) | [i] | ✔ | |
10 | Linear OA(3232, 19716, F3, 38) (dual of [19716, 19484, 39]-code) | [i] | ✔ | |
11 | Linear OA(3206, 19710, F3, 34) (dual of [19710, 19504, 35]-code) | [i] | ✔ | |
12 | Linear OA(3207, 19718, F3, 34) (dual of [19718, 19511, 35]-code) | [i] | ✔ | |
13 | Linear OA(3205, 19716, F3, 33) (dual of [19716, 19511, 34]-code) | [i] | ✔ | |
14 | Linear OA(3246, 19724, F3, 40) (dual of [19724, 19478, 41]-code) | [i] | ✔ | |
15 | Linear OA(3247, 19731, F3, 40) (dual of [19731, 19484, 41]-code) | [i] | ✔ | |
16 | Linear OA(3243, 19724, F3, 39) (dual of [19724, 19481, 40]-code) | [i] | ✔ | |
17 | Linear OA(3244, 19728, F3, 39) (dual of [19728, 19484, 40]-code) | [i] | ✔ | |
18 | Linear OA(3210, 19724, F3, 34) (dual of [19724, 19514, 35]-code) | [i] | ✔ | |
19 | Linear OA(3211, 19731, F3, 34) (dual of [19731, 19520, 35]-code) | [i] | ✔ | |
20 | Linear OA(3207, 19724, F3, 33) (dual of [19724, 19517, 34]-code) | [i] | ✔ | |
21 | Linear OA(3208, 19728, F3, 33) (dual of [19728, 19520, 34]-code) | [i] | ✔ | |
22 | Linear OA(3216, 19745, F3, 34) (dual of [19745, 19529, 35]-code) | [i] | ✔ | |
23 | Linear OA(3220, 19758, F3, 34) (dual of [19758, 19538, 35]-code) | [i] | ✔ | |
24 | Linear OA(3245, 19722, F3, 40) (dual of [19722, 19477, 41]-code) | [i] | ✔ | |
25 | Linear OA(3246, 19730, F3, 40) (dual of [19730, 19484, 41]-code) | [i] | ✔ | |
26 | Linear OA(3209, 19722, F3, 34) (dual of [19722, 19513, 35]-code) | [i] | ✔ | |
27 | Linear OA(3210, 19730, F3, 34) (dual of [19730, 19520, 35]-code) | [i] | ✔ | |
28 | Linear OA(3215, 19744, F3, 34) (dual of [19744, 19529, 35]-code) | [i] | ✔ | |
29 | Linear OA(3213, 19736, F3, 33) (dual of [19736, 19523, 34]-code) | [i] | ✔ | |
30 | Linear OA(3220, 19697, F3, 37) (dual of [19697, 19477, 38]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
31 | Linear OA(3222, 19709, F3, 36) (dual of [19709, 19487, 37]-code) | [i] | ✔ | |
32 | Linear OA(3221, 19707, F3, 36) (dual of [19707, 19486, 37]-code) | [i] | ✔ | |
33 | Linear OA(3211, 19697, F3, 35) (dual of [19697, 19486, 36]-code) | [i] | ✔ | |
34 | Linear OA(3202, 19697, F3, 34) (dual of [19697, 19495, 35]-code) | [i] | ✔ | |
35 | Linear OA(3204, 19709, F3, 33) (dual of [19709, 19505, 34]-code) | [i] | ✔ | |
36 | Linear OA(3203, 19707, F3, 33) (dual of [19707, 19504, 34]-code) | [i] | ✔ | |
37 | Linear OOA(3199, 9841, F3, 2, 34) (dual of [(9841, 2), 19483, 35]-NRT-code) | [i] | OOA Folding | |
38 | Linear OOA(3199, 6561, F3, 3, 34) (dual of [(6561, 3), 19484, 35]-NRT-code) | [i] | ||
39 | Linear OOA(3199, 4920, F3, 4, 34) (dual of [(4920, 4), 19481, 35]-NRT-code) | [i] | ||
40 | Linear OOA(3199, 3936, F3, 5, 34) (dual of [(3936, 5), 19481, 35]-NRT-code) | [i] | ||
41 | Linear OOA(3199, 1157, F3, 34, 34) (dual of [(1157, 34), 39139, 35]-NRT-code) | [i] | OA Folding and Stacking |