Information on Result #629406

Linear OA(2167, 183, F2, 79) (dual of [183, 16, 80]-code), using concatenation of two codes based on
  1. linear OA(453, 61, F4, 39) (dual of [61, 8, 40]-code), using
    • 4 times truncation [i] based on linear OA(457, 65, F4, 43) (dual of [65, 8, 44]-code), using
      • the expurgated narrow-sense BCH-code C(I) with length 65 | 46−1, defining interval I = [0,21], and minimum distance d ≥ |{−21,−20,…,21}|+1 = 44 (BCH-bound) [i]
  2. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2167, 183, F2, 78) (dual of [183, 16, 79]-code) [i]Strength Reduction
2Linear OA(2167, 183, F2, 77) (dual of [183, 16, 78]-code) [i]
3Linear OA(2167, 183, F2, 76) (dual of [183, 16, 77]-code) [i]
4Linear OA(2167, 183, F2, 75) (dual of [183, 16, 76]-code) [i]
5Linear OA(2167, 183, F2, 74) (dual of [183, 16, 75]-code) [i]
6Linear OA(2180, 196, F2, 79) (dual of [196, 16, 80]-code) [i]Code Embedding in Larger Space
7Linear OA(2166, 182, F2, 78) (dual of [182, 16, 79]-code) [i]Truncation
8Linear OA(2165, 181, F2, 77) (dual of [181, 16, 78]-code) [i]
9Linear OA(2163, 179, F2, 75) (dual of [179, 16, 76]-code) [i]
10Linear OA(2162, 178, F2, 74) (dual of [178, 16, 75]-code) [i]
11Linear OA(2160, 176, F2, 72) (dual of [176, 16, 73]-code) [i]
12Linear OA(2159, 175, F2, 71) (dual of [175, 16, 72]-code) [i]
13Linear OA(2157, 173, F2, 69) (dual of [173, 16, 70]-code) [i]
14Linear OA(2156, 172, F2, 68) (dual of [172, 16, 69]-code) [i]
15Linear OOA(2167, 91, F2, 2, 79) (dual of [(91, 2), 15, 80]-NRT-code) [i]OOA Folding
16Linear OOA(2167, 61, F2, 3, 79) (dual of [(61, 3), 16, 80]-NRT-code) [i]