Information on Result #674465
Linear OA(3218, 531467, F3, 27) (dual of [531467, 531249, 28]-code), using construction X applied to C([0,13]) ⊂ C([0,12]) based on
- linear OA(3217, 531442, F3, 27) (dual of [531442, 531225, 28]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,13], and minimum distance d ≥ |{−13,−12,…,13}|+1 = 28 (BCH-bound) [i]
- linear OA(3193, 531442, F3, 25) (dual of [531442, 531249, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(31, 25, F3, 1) (dual of [25, 24, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3219, 531468, F3, 27) (dual of [531468, 531249, 28]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(3220, 531469, F3, 27) (dual of [531469, 531249, 28]-code) | [i] | ||
3 | Linear OA(3221, 531470, F3, 27) (dual of [531470, 531249, 28]-code) | [i] | ||
4 | Linear OA(3222, 531471, F3, 27) (dual of [531471, 531249, 28]-code) | [i] | ||
5 | Linear OOA(3218, 265733, F3, 2, 27) (dual of [(265733, 2), 531248, 28]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(3218, 177155, F3, 3, 27) (dual of [(177155, 3), 531247, 28]-NRT-code) | [i] | ||
7 | Linear OOA(3218, 132866, F3, 4, 27) (dual of [(132866, 4), 531246, 28]-NRT-code) | [i] | ||
8 | Linear OOA(3218, 106293, F3, 5, 27) (dual of [(106293, 5), 531247, 28]-NRT-code) | [i] | ||
9 | Linear OOA(3218, 40882, F3, 27, 27) (dual of [(40882, 27), 1103596, 28]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |