Information on Result #674579
Linear OA(3211, 531483, F3, 26) (dual of [531483, 531272, 27]-code), using construction X applied to Ce(25) ⊂ Ce(21) based on
- linear OA(3205, 531441, F3, 26) (dual of [531441, 531236, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(3169, 531441, F3, 22) (dual of [531441, 531272, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(36, 42, F3, 3) (dual of [42, 36, 4]-code or 42-cap in PG(5,3)), using
- discarding factors / shortening the dual code based on linear OA(36, 48, F3, 3) (dual of [48, 42, 4]-code or 48-cap in PG(5,3)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3212, 531484, F3, 26) (dual of [531484, 531272, 27]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(3213, 531485, F3, 26) (dual of [531485, 531272, 27]-code) | [i] | ||
3 | Linear OA(3214, 531486, F3, 26) (dual of [531486, 531272, 27]-code) | [i] | ||
4 | Linear OA(3215, 531487, F3, 26) (dual of [531487, 531272, 27]-code) | [i] | ||
5 | Linear OOA(3211, 265741, F3, 2, 26) (dual of [(265741, 2), 531271, 27]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(3211, 177161, F3, 3, 26) (dual of [(177161, 3), 531272, 27]-NRT-code) | [i] | ||
7 | Linear OOA(3211, 132870, F3, 4, 26) (dual of [(132870, 4), 531269, 27]-NRT-code) | [i] | ||
8 | Linear OOA(3211, 106296, F3, 5, 26) (dual of [(106296, 5), 531269, 27]-NRT-code) | [i] | ||
9 | Linear OOA(3211, 40883, F3, 26, 26) (dual of [(40883, 26), 1062747, 27]-NRT-code) | [i] | OA Folding and Stacking |