Information on Result #676529

Linear OA(3110, 736, F3, 28) (dual of [736, 626, 29]-code), using construction X applied to Ce(27) ⊂ Ce(25) based on
  1. linear OA(3109, 729, F3, 28) (dual of [729, 620, 29]-code), using an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]
  2. linear OA(3103, 729, F3, 26) (dual of [729, 626, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
  3. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3110, 506, F3, 2, 28) (dual of [(506, 2), 902, 29]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(3110, 506, F3, 3, 28) (dual of [(506, 3), 1408, 29]-NRT-code) [i]
3Linear OOA(3110, 506, F3, 4, 28) (dual of [(506, 4), 1914, 29]-NRT-code) [i]
4Linear OOA(3110, 506, F3, 5, 28) (dual of [(506, 5), 2420, 29]-NRT-code) [i]
5Digital (82, 110, 506)-net over F3 [i]
6Linear OA(3119, 768, F3, 28) (dual of [768, 649, 29]-code) [i]VarÅ¡amov–Edel Lengthening
7Linear OA(3120, 780, F3, 28) (dual of [780, 660, 29]-code) [i]
8Linear OA(3121, 796, F3, 28) (dual of [796, 675, 29]-code) [i]
9Linear OA(3122, 816, F3, 28) (dual of [816, 694, 29]-code) [i]
10Linear OA(3123, 840, F3, 28) (dual of [840, 717, 29]-code) [i]
11Linear OOA(3110, 368, F3, 2, 28) (dual of [(368, 2), 626, 29]-NRT-code) [i]OOA Folding
12Linear OOA(3110, 245, F3, 3, 28) (dual of [(245, 3), 625, 29]-NRT-code) [i]
13Linear OOA(3110, 184, F3, 4, 28) (dual of [(184, 4), 626, 29]-NRT-code) [i]
14Linear OOA(3110, 147, F3, 5, 28) (dual of [(147, 5), 625, 29]-NRT-code) [i]