Information on Result #682067

Linear OA(462, 70, F4, 45) (dual of [70, 8, 46]-code), using construction XX applied to Ce(46) ⊂ Ce(42) ⊂ Ce(41) based on
  1. linear OA(460, 64, F4, 47) (dual of [64, 4, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(457, 64, F4, 43) (dual of [64, 7, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(456, 64, F4, 42) (dual of [64, 8, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
  4. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  5. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(462, 70, F4, 44) (dual of [70, 8, 45]-code) [i]Strength Reduction
2Linear OA(462, 70, F4, 43) (dual of [70, 8, 44]-code) [i]
3Linear OA(462, 70, F4, 42) (dual of [70, 8, 43]-code) [i]
4Linear OA(462, 70, F4, 41) (dual of [70, 8, 42]-code) [i]
5Linear OA(4126, 134, F4, 88) (dual of [134, 8, 89]-code) [i]Juxtaposition
6Linear OA(4127, 135, F4, 89) (dual of [135, 8, 90]-code) [i]
7Linear OA(2194, 210, F2, 91) (dual of [210, 16, 92]-code) [i]Concatenation of Two Codes
8Linear OOA(462, 35, F4, 2, 45) (dual of [(35, 2), 8, 46]-NRT-code) [i]OOA Folding