Information on Result #695076

Linear OA(2773, 19686, F27, 25) (dual of [19686, 19613, 26]-code), using construction X applied to Ce(24) ⊂ Ce(23) based on
  1. linear OA(2773, 19683, F27, 25) (dual of [19683, 19610, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
  2. linear OA(2770, 19683, F27, 24) (dual of [19683, 19613, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
  3. linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(9110, 19686, S9, 25) [i]Discarding Parts of the Base for OAs
2Linear OA(2788, 19738, F27, 25) (dual of [19738, 19650, 26]-code) [i](u, u+v)-Construction
3Linear OA(2789, 19750, F27, 25) (dual of [19750, 19661, 26]-code) [i]
4Linear OA(2790, 19754, F27, 25) (dual of [19754, 19664, 26]-code) [i]
5Linear OA(2791, 19762, F27, 25) (dual of [19762, 19671, 26]-code) [i]
6Linear OA(2792, 19768, F27, 25) (dual of [19768, 19676, 26]-code) [i]
7Linear OA(2793, 19770, F27, 25) (dual of [19770, 19677, 26]-code) [i]
8Linear OA(2794, 19794, F27, 25) (dual of [19794, 19700, 26]-code) [i]
9Linear OA(2795, 19872, F27, 25) (dual of [19872, 19777, 26]-code) [i]
10Linear OA(2796, 20418, F27, 25) (dual of [20418, 20322, 26]-code) [i]
11OA(2789, 19768, S27, 25) [i]
12OA(2791, 19786, S27, 25) [i]
13OA(2792, 19802, S27, 25) [i]
14OA(2793, 19804, S27, 25) [i]
15Linear OOA(2773, 9843, F27, 2, 25) (dual of [(9843, 2), 19613, 26]-NRT-code) [i]OOA Folding