Information on Result #695086

Linear OA(2752, 19686, F27, 18) (dual of [19686, 19634, 19]-code), using construction X applied to Ce(17) ⊂ Ce(16) based on
  1. linear OA(2752, 19683, F27, 18) (dual of [19683, 19631, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(2749, 19683, F27, 17) (dual of [19683, 19634, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(978, 19686, S9, 18) [i]Discarding Parts of the Base for OAs
2Linear OA(2762, 19724, F27, 18) (dual of [19724, 19662, 19]-code) [i](u, u+v)-Construction
3Linear OA(2763, 19734, F27, 18) (dual of [19734, 19671, 19]-code) [i]
4Linear OA(2764, 19738, F27, 18) (dual of [19738, 19674, 19]-code) [i]
5Linear OA(2765, 19750, F27, 18) (dual of [19750, 19685, 19]-code) [i]
6Linear OA(2766, 19754, F27, 18) (dual of [19754, 19688, 19]-code) [i]
7Linear OA(2767, 19792, F27, 18) (dual of [19792, 19725, 19]-code) [i]
8Linear OA(2768, 19871, F27, 18) (dual of [19871, 19803, 19]-code) [i]
9OA(2764, 19768, S27, 18) [i]
10OA(2766, 19786, S27, 18) [i]
11OA(2767, 19802, S27, 18) [i]
12Linear OOA(2752, 9843, F27, 2, 18) (dual of [(9843, 2), 19634, 19]-NRT-code) [i]OOA Folding