Information on Result #703115

Linear OA(326, 242, F3, 8) (dual of [242, 216, 9]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(326, 141, F3, 2, 8) (dual of [(141, 2), 256, 9]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(326, 141, F3, 3, 8) (dual of [(141, 3), 397, 9]-NRT-code) [i]
3Linear OOA(326, 141, F3, 4, 8) (dual of [(141, 4), 538, 9]-NRT-code) [i]
4Linear OOA(326, 141, F3, 5, 8) (dual of [(141, 5), 679, 9]-NRT-code) [i]
5Digital (18, 26, 141)-net over F3 [i]
6Linear OA(331, 252, F3, 9) (dual of [252, 221, 10]-code) [i]Construction XX with Cyclic Codes
7Linear OA(339, 260, F3, 11) (dual of [260, 221, 12]-code) [i]
8Linear OA(346, 267, F3, 12) (dual of [267, 221, 13]-code) [i]
9Linear OA(354, 275, F3, 14) (dual of [275, 221, 15]-code) [i]
10Linear OA(345, 261, F3, 13) (dual of [261, 216, 14]-code) [i]
11Linear OA(343, 259, F3, 12) (dual of [259, 216, 13]-code) [i]
12Linear OA(352, 268, F3, 14) (dual of [268, 216, 15]-code) [i]