Information on Result #703192
Linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(346, 153, F3, 2, 14) (dual of [(153, 2), 260, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(346, 153, F3, 3, 14) (dual of [(153, 3), 413, 15]-NRT-code) | [i] | ||
3 | Linear OOA(346, 153, F3, 4, 14) (dual of [(153, 4), 566, 15]-NRT-code) | [i] | ||
4 | Linear OOA(346, 153, F3, 5, 14) (dual of [(153, 5), 719, 15]-NRT-code) | [i] | ||
5 | Digital (32, 46, 153)-net over F3 | [i] | ||
6 | Linear OA(351, 252, F3, 15) (dual of [252, 201, 16]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(359, 260, F3, 17) (dual of [260, 201, 18]-code) | [i] | ✔ | |
8 | Linear OA(366, 267, F3, 18) (dual of [267, 201, 19]-code) | [i] | ✔ | |
9 | Linear OA(374, 275, F3, 20) (dual of [275, 201, 21]-code) | [i] | ✔ | |
10 | Linear OA(365, 261, F3, 19) (dual of [261, 196, 20]-code) | [i] | ✔ | |
11 | Linear OA(363, 259, F3, 18) (dual of [259, 196, 19]-code) | [i] | ✔ | |
12 | Linear OA(372, 268, F3, 20) (dual of [268, 196, 21]-code) | [i] | ✔ | |
13 | Linear OA(380, 276, F3, 22) (dual of [276, 196, 23]-code) | [i] | ✔ | |
14 | Linear OA(387, 283, F3, 23) (dual of [283, 196, 24]-code) | [i] | ✔ |