Information on Result #703205

Linear OA(350, 242, F3, 15) (dual of [242, 192, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {106,107,…,120}, and designed minimum distance d ≥ |I|+1 = 16

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(350, 168, F3, 2, 15) (dual of [(168, 2), 286, 16]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(350, 168, F3, 3, 15) (dual of [(168, 3), 454, 16]-NRT-code) [i]
3Linear OOA(350, 168, F3, 4, 15) (dual of [(168, 4), 622, 16]-NRT-code) [i]
4Linear OOA(350, 168, F3, 5, 15) (dual of [(168, 5), 790, 16]-NRT-code) [i]
5Digital (35, 50, 168)-net over F3 [i]
6Linear OA(360, 262, F3, 17) (dual of [262, 202, 18]-code) [i]Construction XX with Cyclic Codes
7Linear OA(370, 262, F3, 20) (dual of [262, 192, 21]-code) [i]
8Linear OA(377, 269, F3, 21) (dual of [269, 192, 22]-code) [i]
9Linear OA(385, 277, F3, 23) (dual of [277, 192, 24]-code) [i]
10Linear OOA(350, 121, F3, 2, 15) (dual of [(121, 2), 192, 16]-NRT-code) [i]OOA Folding
11Linear OOA(350, 80, F3, 3, 15) (dual of [(80, 3), 190, 16]-NRT-code) [i]
12Linear OOA(350, 60, F3, 4, 15) (dual of [(60, 4), 190, 16]-NRT-code) [i]