Information on Result #703211

Linear OA(366, 242, F3, 20) (dual of [242, 176, 21]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {103,104,…,122}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(375, 277, F3, 20) (dual of [277, 202, 21]-code) [i]Construction XX with Cyclic Codes
2Linear OA(373, 269, F3, 20) (dual of [269, 196, 21]-code) [i]
3Linear OA(370, 262, F3, 20) (dual of [262, 192, 21]-code) [i]
4Linear OA(367, 253, F3, 20) (dual of [253, 186, 21]-code) [i]
5Linear OA(373, 254, F3, 22) (dual of [254, 181, 23]-code) [i]
6Linear OA(380, 262, F3, 23) (dual of [262, 182, 24]-code) [i]
7Linear OA(387, 269, F3, 24) (dual of [269, 182, 25]-code) [i]
8Linear OA(395, 277, F3, 26) (dual of [277, 182, 27]-code) [i]