Information on Result #703251

Linear OA(363, 254, F3, 19) (dual of [254, 191, 20]-code), using construction XX applied to C1 = C([108,124]), C2 = C([106,122]), C3 = C1 + C2 = C([108,122]), and C∩ = C1 ∩ C2 = C([106,124]) based on
  1. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,124}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {106,107,…,122}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {106,107,…,124}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  4. linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,122}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
  6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(369, 276, F3, 19) (dual of [276, 207, 20]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(363, 127, F3, 2, 19) (dual of [(127, 2), 191, 20]-NRT-code) [i]OOA Folding
3Linear OOA(363, 84, F3, 3, 19) (dual of [(84, 3), 189, 20]-NRT-code) [i]