Information on Result #704314

Linear OA(373, 740, F3, 18) (dual of [740, 667, 19]-code), using construction XX applied to C1 = C([727,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([727,16]) based on
  1. linear OA(367, 728, F3, 17) (dual of [728, 661, 18]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(367, 728, F3, 17) (dual of [728, 661, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(373, 728, F3, 18) (dual of [728, 655, 19]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  4. linear OA(361, 728, F3, 16) (dual of [728, 667, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(380, 767, F3, 18) (dual of [767, 687, 19]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(381, 781, F3, 18) (dual of [781, 700, 19]-code) [i]
3Linear OA(382, 800, F3, 18) (dual of [800, 718, 19]-code) [i]
4Linear OOA(373, 370, F3, 2, 18) (dual of [(370, 2), 667, 19]-NRT-code) [i]OOA Folding
5Linear OOA(373, 246, F3, 3, 18) (dual of [(246, 3), 665, 19]-NRT-code) [i]
6Linear OOA(373, 185, F3, 4, 18) (dual of [(185, 4), 667, 19]-NRT-code) [i]